

Chester Metal Super Y

DESCRIPTION:

Chester Metal Super Y is a two-element tixotropic epoxy-metallic composite. The material contains modified epoxy resins, ceramic, silicon-steel and fiber fillers. It is designed for complement, rebuilding and joining oiled metal surfaces in wet conditions. Cures under water.

TYPICAL APPLICATION:

- LEAKAGES IN PIPELINES AND TANKS.
- REPAIR OF WET OR UNDERWATER ELEMENTS
- KORT NOZZLE RECONSTRUCTION
- SETTLING OF BRIDGE BEARING
- REPAIR CRACKS IN TANKS

Technical data				
Cured Density			2,0 g/cm ³	
Mix Ratio by Volume			1:1	
Mix Ratio by Weight			1,5 : 1	
Color			gray	
Tensile Shear (Stainless Steel)	ASTM 1002	ISO 4587	18,1 MPa	2625 psi
Tensile Shear (Mild Steel)	ASTM 1002	ISO 4587	18,1 MPa	2625 psi
Tensile Shear (Aluminum)	ASTM 1002	ISO 4587	12,0 MPa	1740 psi
Tensile Shear (Brass)	ASTM 1002	ISO 4587	11,0 MPa	1595 psi
Temperature Resistance Wet			90°C (-50°C)	194 °F (-58°F)
Temperature Resistance Dry			180°C (-50°C)	356°F (-58°F)
Minimal working temperature			-50°C	-58 °F
Heat Distortion Temperature	ASTM D648			
Ambiet Cure			62°C	143°F
Post Cure			99 °C	210 ⁰ F
Heat Distortion Temperature		DIN 53462	0	0
Ambiet Cure			60 °C	140 °F
Post Cure			89 °C	192 °F
Working Life (68°F)(20°C)			50 min	
Cured Hardness	ASTM D2240		87 ⁰ Sh D	
Compressive Strength	ASTM D695		1325 kg/cm ²	18854 psi
		ISO 604	130 MPa	18854 psi
Thermal conductivity coefficient			0.56 W/mK	
Flexural strength		ISO 178	92 MPa	
Flexural modulus			8560 MPa	
Impact strength		ISO 179	6.5 kJ/m ²	

Chester Metal Super Y

DIRECTIONS FOR USE

Conditions during the application.

The product cannot be used under 8°C.

Surface preparation.

The surface in the part to be repaired shall be mechanically cleaned by means of blast cleaning, sanding, or with the help of the abrasive paper, grinders, pin-lift grinding wheels, etc. You should always aim at thoroughly remove all loose contamination and make the surface roughened. A correctly prepared surface shall be degreased using for ex. Chester Fast Cleaner. F-7 or Chester Ultra Fast Degreaser F-6.

Mixing and application of the composition.

Use two different spatulas to take the Base and the Reactor. Mix both elements on the flat smooth surface (do not mix them in their packages) until obtaining a uniform color. Once the mix was prepared it should be directly applied, because curing starts immediately and every late could weaken the adhesion. Necessary layer should be placed single, carefully rubbing it into the base. In case there is necessary second layer, first shouldn't be fully cured, otherwise there should be made rough surface. In the case of repairs of cracks, it is recommended to additionally reinforce the composite with a fiberglass net.

Post curing

Post curing in temperature $80\text{-}110^{\circ}\text{C}$ (176-230°F) in minimum 2h, after initial cure considerably improves mechanical properties, heat and chemical resistance. Optimal cure e.g. tensile shear research, optained after 7 days in 20°C (68°F) and post-cure by heating to 100°C (212°F) for a period of up to 24 hours.

CURE TIME ACCORDING TO THE TEMPERATURE.

Ambient temperature °C (°F)	Time for application [min]	Time for treatment [h]		
8 (46)	120	18		
10 (50)	70	10		
20 (68)	50	6		
30 (86)	35	3		

It should be remembered that the rate of the reaction significantly depends, apart from the ambient

temperature, on the quantity of the used material (the bigger mass of the mixed material, the reaction rate increases). The above presented times refer to the mass of 0.25 kg of the composite.

CHEMICAL RESISTANCE

Tests were carried at the temperature of $20^{\circ}\text{C}(68^{\circ}\text{F})$. The tests were carried after 7 days of curing at the temperature of $20^{\circ}\text{C}(68^{\circ}\text{F})$.

- 1 Prolonged immersion
- 2 Short-term immersion
- 3 Not recommended

Solvent	Chemical resistance
Petrol	1
Diesel fuel	1
Brake fluid	1
Motor oil	1
Petroleum	1
Nitric acid 10%	1
Nitrous acid 10%	1
Acetic acid 5%	2
Amines	1
Hydrochloric acid 10%	1
Ammonia 20%	1
Water 100 °C(212 °F)	1
Sea water	1
Ozone (dry)	1
Chlorine	1
Acetone	3
Methylene Chloride	3

Full table of chemical resistance is on the website http://www.chester.com.pl/GBA/multimedia/2/51/

OTHER INFORMATION

Storage

The product should be stored in original packaging at temperature between $+0^{\circ}\text{C}(32^{\circ}\text{F})$ to $+30^{\circ}\text{C}(86^{\circ}\text{F})$.

ISO 9001:2000