

Chester EVY

DESCRIPTION:

Chester EVY is a two-element liquid epoxy-metallic composite. The material contains modified epoxy resins, steel and quartz fillers. Performing machine foundation leakers.

TYPICAL APPLICATION:

- MACHINES AND DEVICES FOUNDATION
- TANKS FOUNDATION
- BRIDGE BEARINGS MONTAGE
- LARG-SIZE BEARINGS MONTAGE

- ASSAMBLY OF TOOTHED-WHEEL
- FOUNDATION SCREW FOUNDATION
- ANCHORING RIMS MONTAGE

Technical data				
Cured Density			1,41 g/cm ³	
Mix Ratio by Volume			whole package	
Mix Ratio by Weight			6: 1	
Color			black	
Tensile Shear (Stainless Steel)	ASTM 1002	ISO 4587	17,0 MPa	2465 psi
Tensile Shear (Mild Steel)	ASTM 1002	ISO 4587	17,0 MPa	2465 psi
Tensile Shear (Aluminum)	ASTM 1002	ISO 4587	12,0 MPa	1740 psi
Temperature Resistance Wet			60 ⁰ C	
Temperature Resistance Dry			80 ⁰ C	
Minimal working temperature			-50 ⁰ C	
Working Life (68°F)(20°C)			40 min	
Cured Hardness	ASTM D2240	ISO R868	90 [°] Sh D	
Compressive Strength	ASTM D695	ISO 604	125 MPa	18125 psi
Thermal conductivity coefficient			0,55 W/mK	
Flexural strength		ISO 178	90 MPa	13050 psi
Flexural modulus			8500 MPa	1,23x10 ⁶ psi
Impact strength		ISO 179	5,3 kJ/m ²	

DIRECTIONS FOR USE

Conditions during the application.

The product is not recommended to apply when the ambient temperature is below $10^{\circ}C(50^{\circ}F)$ and the relative humidity is above 90% or when condensation occurs on the surface to be repaired.

Metal surface preparation.

The metal surface must be free from any contamination. Then, if necessary, impose Chester Lubricant PTFE F-14 isolation preparation.

Concrete surface preparation.

Surface must be dry and cleaned of loose pieces of concrete

Mixing and application of the composition.

Mix the contents of the container labeled "Base" and then add "Reactor" to "Base". Mix both until to obtain uniform consistency. Pour into prepared flood area according to earlier prepared pouring plan. Product allows to make a foundation thick broken within 4-30mm (0,16" - 1,2").

Post curing

Post curing in temperature 60-80°C (140-176°F) in minimum 2h, after initial cure considerably improves mechanical properties, heat and chemical resistance.

May 2013

Chester EVY

WPŁYW TEMPERATURY NA CZAS UTWARDZANIA

Ambient temperature [°C]	Time for application [min]	Time for treatment [h]
10	45	72
15	40	48
20	35	24

It should be remembered that the rate of the reaction significantly depends, apart from the ambient temperature, on the quantity of the used material (the bigger mass of the mixed material, the reaction rate increases).

CHEMICAL RESISTANCE

Tests were carried at the temperature of $20^{\circ}C(68^{\circ}F)$. The tests were carried after 7 days of curing at the temperature of $20^{\circ}C(68^{\circ}F)$

- 1 Prolonged immersion
- 2 Short-term immersion
- 3 Not recommended

Solvent	Chemical resistance
Petrol	1
Diesel fuel	1
Brake fluid	1
Motor oil	1
Petroleum	1
Nitric acid 10%	1
Nitrous acid 10%	1
Acetic acid 5%	2
Ethanol	1
Hydrochloric acid 15%	1
Ammonia 20%	1
Water 60 ^o C	1
Sea water	1
Sodium hydroxide 40%	1
Methylene Chloride	3

Full table of chemical resistance is on the website http://www.chester.com.pl/GBA/multimedia/2/51/

OTHER INFORMATION

Storage.

The product should be stored in original packaging at temperature between $0^{\circ}C(32^{\circ}F)$ to $+30^{\circ}C(86^{\circ}F)$.